IngoAlthoefer
20.06.2016, 16:35

+19Puzzle mit 4x4 Teilen

Hallo,

aus den 1950er Jahren stammt ein Puzzle, wo 4 x 4 Teile
so aneinander zu legen sind, dass alle Übergänge passen.
Der Schöpfer (Hans Bouwmeester aus den Niederlanden?!)
beschrieb es mit 16 Pappkärtchen, wo auf jedem ein bestimmtes
Muster aus vier Nullen/Einsen abgebildet war. Jede der
2 hoch 4 Möglichkeiten kam genau einmal vor.

Schon vor einiger Zeit habe ich dieses Puzzle mit LEGO-Steinen
realisiert:

[image]


Die 16 Teile in zufälliger Anordnung. 0 und 1 sind durch die Farben rot und blau ersetzt.



[image]


Meine einfache Konstruktion mit schwarzen Steinen als Unterschicht.



[image]


Links eine Teillösung aus sieben Elementen. Am Ende müssen an allen Übergangsstellen
alle Farben zueinander passen.

Viel Spaß beim Nachbauen und Probieren. Es gibt mehr als 400 Lösungen.

Ingo.


Mein MoC ist fertig, wenn ich
nichts mehr wegnehmen mag.


Mitglieder, denen dieses MOC gefällt:

doktorjoerg , Custer , Cran , Seeteddy , Legomichel , Dirk1313 , renrew , Legobecker , Plastik , MARPSCH , fannie1981 , Lukutus , cimddwc , doe , uefchen , Titus , naseneis , nvneuss , JuL (19 Mitglieder)

30 vorhergehende Beiträge sind ausgeblendet

Alle anzeigen Immer alle anzeigen Beitragsbaum

Sylvius
25.06.2016, 23:52

Als Antwort auf den Beitrag von Kirk

Re: Puzzle mit 4x4 Teilen

Permalink

1000steine-Code

BBCode

HTML


Kirk hat geschrieben:

Sylvius hat geschrieben:
Ohne auf die Farben zu achten, kann man die weißen Kreuze doch durchaus so zusammenlegen, dass sich ein 4x4 ergibt ohne dass die Kreuze gleich ausgerichtet sind.


Hallo Sylvius,

gerade wollte ich zu einer meiner epischen Begründungen ansetzen, warum ich Recht habe, bis ich mir überlegte, es nochmal selbst auszuprobieren. Das erstaunliche Ergebnis: Ja, Du hast Recht! Es gibt tatsächlich noch eine 2. Möglichkeit, die Teile im Quadrat anzuordnen, wobei natürlich die Größen der farbigen Flächen zwischen 2x2 und 4x4 schwanken. Da aber mein Ergebnis von 800 Lösungen von Ingo bestätigt wurde, gehe ich davon aus, daß die einheitliche Ausrichtung implizit Bestandteil des Puzzles ist. Ich würde mich aber freuen, wenn Du eine Lösung mit der 2. Anordnungsvariante posten würdest.

Gruß

Thomas


Hi Kirk,

leider reichts da bei mir mit meinen Kenntnissen beiweiten nicht für. Mir war nur nach einem kurzen Blick klar, das ich ein Teil aus der "Normalausrichtung" nehmen kann (rein jetzt auf die weißen Kreuze Bezogen), dieses um 90, 180 und 270 drehen könnte und an der Spitze zusammen setzen könnte. Daraus habe ich dann ein 2x2 bekommen woraus man 4 wiederum zu einem 4x4 zusammensetzen konnte. Durch eine weitere Zeilen- und Spaltenvertauschenung (oben abnehmen und unten dransetzen + links eine wegnehmen und rechts dransetzen), kriegt man dann eine 3. Anordnbung, die man wiederum um 90, 180 und 270 drehen könnte. Wie gesagt Lösungen habe ich dafür nicht, weil es dafür nicht bei mir reicht.
Ich war eigentlich in gutem Glauben davon ausgegangen, dass du vielleicht einen Grund wüsstest, warum es für die anderen Anordnung keine Lösung gibt. (Analog des bekannten Geschicklichkeitspiels, wo man in einem 4x4 Quadrat 15 Plätchen it Zahlen und ein Freiraum hat und man durch verschieben die Zahlen in Reihenfolge bringen kann. Setzt man dort die Zahlen willkürlich ein, kann man ja auch sofort bestimmen, ob das Rätsel in der From lösbar ist oder nicht).

MfG
Sylvius



Zypper
02.07.2016, 15:09

Als Antwort auf den Beitrag von IngoAlthoefer

Re: Puzzle mit 4x4 Teilen

Hi, Ingo,

vielen Dank für die Idee. Hab sie gleich abgekupfert in rot/schwarz und auf Platten bzw. auf "Unten-Drunter-Fliesen" gelegt. So ein Spiel kann ich zur Erweiterung meines Repertoires immer brauchen, denn ich bin ja immer auf der Suche nach etwas, mit dem man Ausstellungsgäste unterhalten kann. Ob und welche Lösungen große und kleine Gäste mit diesem neuen Spiel finden werden, ist dabei völlig unerheblich: Es geht um die Faszination, das von dem Material ausgeht. Denn die allermeisten sind völlig überrascht, wenn sie sehen, was man auch daraus machen kann.

Hinzu kam, dass ich noch ein Kästchen übrig hatte, in das genau 16 Kärtchen passen.

Bis bald
Andreas


"Be the change you want to see in the world..."
#desmondisamazing

[image]


Zypper bei flickr


IngoAlthoefer
04.07.2016, 09:17

Als Antwort auf den Beitrag von Zypper

Re: Puzzle mit 4x4 Teilen

Hallo Andreas,

Zypper hat geschrieben:

vielen Dank für die Idee. Hab sie gleich abgekupfert in
rot/schwarz und auf Platten bzw. auf "Unten-Drunter-Fliesen" gelegt.
So ein Spiel kann ich zur Erweiterung

meines Repertoires
immer brauchen, denn ich bin ja immer auf der
Suche nach etwas, mit dem man Ausstellungsgäste unterhalten kann...

Du magst es nicht glauben. "Mein" Puzzle (ursprünglich als Pen-and-Paper-Version
kreiert von C.J. Bouwkamp) hatte ich schon im Dezember 2011 gebaut und damals
als Adventsrätsel in der Computerspiele-Szene genutzt. Die Teile lagen vergessen
im Regal. Als ich Deinen Beitrag im Mai las, erinnerte ich mich wieder.

Ist doch toll, wie wir uns wechselseitig befruchten.

Dir und allen anderen eine gute Woche,
Ingo.


Mein MoC ist fertig, wenn ich
nichts mehr wegnehmen mag.


IngoAlthoefer
04.07.2016, 09:27

Als Antwort auf den Beitrag von IngoAlthoefer

Re: Puzzle mit 4x4 Teilen (Update)

Hallo, Ihr Tüftler gross und klein,

cimddwc hat geschrieben:

Nun, ich werd' nächste Woche noch weiterrechnen lassen
(übers Wochenende bleibt der PC aus),

253 Steine hat das 4er-Programm mittlerweile erreicht;

jetzt habe ich meinen Kumpel Dietmar Wolz aus der Astrophysik-Szene
auf das Puzzle hingewiesen. Er hat (mit seinem Hintergrundwissen aus
den beiden Eternity-Puzzles) ein schnelles Programm geschrieben, was
inzwischen auch einen ersten 254er (bei 4 Farben) gefunden hat. 253er
liefert sein Prog im 10-Minuten-Takt.
Diemar verwendet dabei auch eine Heuristik, die davon ausgeht, dass
sich im Gesamtbild "Klumpen" finden sollten, in denen einzelne der Farben
dominieren.

Mal schauen, ob (und von wem) ein Vorstoss zu 255 und 256 gelingt.

Frohes Puzzeln,
Ingo.

********************************************************
Material zum ursprünglichen Problem mit "nur" zwei Farben findet
sich in einem Online-Artikel von Jacques Haubrich:
http://2000clicks.com/mat...esJacquesHaubrich.aspx
Dort ist auch die Anzahl 800 genannt, die schon 1970 erstmalig ermittelt
worden war. (Dank an Torsten Sillke, der mich auf die Quelle hinwies.)


Mein MoC ist fertig, wenn ich
nichts mehr wegnehmen mag.


drdwo
04.07.2016, 10:12

Als Antwort auf den Beitrag von cimddwc

Re: Puzzle mit 4x4 Teilen (etwas offtopic)

Hallo,
Ingo hat mich vor ein paar Tagen auf das Lego Puzzle aufmerksam gemacht. Wir kennen uns schon lange, seit ich mich vor vielen Jahren mit dem Eternity-Puzzle beschäftigt habe https://de.wikipedia.org/wiki/Eternity-Puzzle. Davon gibt es eine neue Variante, Eternity 2, und die hat sehr viel Ähnlichkeit mit dem 4-Farben-Lego Problem. Aus diesem Grund empfehle ich http://cs.brown.edu/peopl...Papers/v3/eternity.pdf , viele Ideen daraus lassen sich auf das Lego-Problem übertragen.

Die Reihe-für-Reihe Strategie ist für Eternity 2 sehr gut. Beim Lego-Problem gibt es im Gegensatz zu Eternity 2 keinen definierten "Rand", füllen wir die z.B. die erste Reihe, haben wir fast nur 1-Seiten-Constraints. Eine Strategie, die immer größere Quadrate beginnend in einer Ecke konstruiert hat schneller 2-Seiten-Constraints und müsste theoretisch besser sein.

Das lässt sich mit dem 2-Farben-Lego Problem leicht beweisen, statt ca. 80000 haben wir nur noch ca. 70000 Versuche. Der Vorteil für das 4-Farben Lego sollte größer sein.

Aus Eternity 1 haben wir gelernt, das es sich lohnt, am Anfang die Suche einzuschränken, wenn dafür am Schluss "besser zusammenpassende" Teile übrigbleiben. Nehmen wir z.B. das 9x9er 3-Farben Problem:

Wenn wir am Anfang nur die 16 Teile mit den ersten beiden Farben verbauen (Eine Lösung des 4x4er 2-Farben Problems) bleiben nur Teile übrig, die alle die dritte Farbe haben und theoretisch mit höherer Wahrscheinlichkeit zusammenpassen. Das ganze lässt sich analog auf das 4-Farben Problem mit vordefiniertem 9x9er übertragen.

Auch die Frage, ob es sich lohnt in Assembler zu programmieren, oder ob eine Programmiersprache wie z.B. Java reicht, war vor 16 Jahren in Bezug auf Eternity 1 schon aktuell. Nur 3 Personen konnten das Puzzle lösen, einer davon (Günter Stertenbrink) benutzte Assembler. Allerdings war dann später ein Java Programm in der Lage, schneller weitere Lösungen zu berechnen.

Für das Lego 2-Color Problem haben wir 2ms für 80000 Versuche für Assembler, mein Java-Programm braucht 2.5 ms. Da man in Java leichter neue Ideen (wie die oben beschriebenen) ausprobieren kann, scheint auch hier der Assembler-Vorteil überschaubar, zumal wir es heute in der Regel mit Multi-Thread Prozessoren zu tun haben. Die Parallelisierung der Suche lässt sich in Assembler nur schwer realisieren.

Mir gefällt das Lego-Problem besonders, weil es neben dem "schwierigen" 4-Farben Problem die lösbare 3-Farben Variante gibt. Die kann man benutzen, um Ideen in Bezug auf Verbesserungen des Suchverfahrens zu testen.

Für das 4-Farben Problem habe ich bis jetzt übrigens auch nur mehrere 254er Teillösungen gefunden. Durch betrachten der Suchergebnisse in Tiefe 79-81 des 3-Farben-Problems versuche ich jetzt, Ideen für eine Verbesserung zu finden. 253 Teile war übrigens auch mein bestes Ergebnis mit der einfachen Reihe-für-Reihe Strategie.

Grüsse Dietmar



IngoAlthoefer
04.07.2016, 10:36

Als Antwort auf den Beitrag von drdwo

Re: Puzzle mit 4x4 Teilen (etwas offtopic)

Hallo Dietmar,

willkommen bei den AFoLs (adult fans of LEGO).
Wenn Du Dich etwas umschaust, wirst Du nicht nur
1000 LEGO-Steine entdecken, sondern auch 1000 Köpfe und
1000 Ideen.

Meine Spezialität ist es, aus wenigen Teilen irgendetwas
ganz anderes zu bauen. Siehe etwa
http://www.1000steine.de/...amp;id=360048#id360048

Gruss, Ingo.


Mein MoC ist fertig, wenn ich
nichts mehr wegnehmen mag.


drdwo
04.07.2016, 16:25

Als Antwort auf den Beitrag von IngoAlthoefer

Re: Puzzle mit 4x4 Teilen (etwas offtopic)

Noch ein paar Ergänzungen/Hinweise:

1) Warum ist es gut, möglichst früh starke Constraints zu haben?

Stärkere Constraints versursachen einen kleineren Suchbaum. Um so früher, um so kleiner.
Beispiel: Stellen wir uns einen Baum der Höhe 10 mit zwei Kindern an der Wurzel vor,
die Knoten der anderen Ebenen haben je ein Kind. Das sind 19 Knoten. Ist die Verzweigung erst auf der neunten Ebene,
sind es 11 Knoten. Es ist also besser, die Suche möglichst früh einzuschränken.

2) Abbruch der Suche

Wir erzeugen viele zufällige 3-Farben Lösungen und zählen jeweils die Versuche bis wir Tiefe 78 erreicht haben, um ein Gefühl
dafür zu bekommen, wann es sich lohnt bei dieser Suchtiefe die Suche abzubrechen.

Die Zahl der Versuche in einer Suchtiefe variiert sehr stark von Lösung zu Lösung.
Stellen wir zum Beispiel fest, das sich bei 10% der Lösungen bei Suchtiefe 78 die Zahl der Versuche weniger als 2% der durchschnittlichen
Versuchszahl an dieser Tiefe ergibt, dann erhalten wir schneller Lösungen, wenn wir nach 2% der durchschnittlichen Versuche bei Tiefe 78 abbrechen. Nämlich durchnittlich 5 mal so viele bei vorgegebener Suchzeit. Diese Methode lässt sich auf andere Suchtiefen übertragen.

Beim 4-Farben Problem haben wir zunächst nur Versuchszahlen bei Tiefe <= 254. Trotzdem können wir versuchen, die Ergebnisse aus dem 3-Farben Problem (mit vollständigen Lösungen) zu übertragen um abzuschätzen, wann wir eine Suche abbrechen sollten.

3) Variation der Suche

Das Abbrechen funktioniert natürlich nur, wenn jede Suche jedesmal anders verläuft. Man kann z.B. die Reihenfolge der Steine ändern.
Arbeitet man mit einer vorgegebenen 3-Farben Lösung die man erweitert, so sollte man darauf achten viele 3-er Lösungen mit verschiedenen
Aussenkanten zu verwenden (ich selbst hatte ca. 16000 3er Lösungen generiert).

4) Lösung

Inzwischen habe ich eine (potentielle) Lösung gefunden, vielleicht kann jemand anderes versuchen, sie zu verifizieren?
Die 256 Teile sind folgendermassen numeriert (beginnend bei 0, die Farben sind von 0-3 kodiert):

0: [0, 0, 0, 0]; 1: [1, 0, 0, 0]; 2: [2, 0, 0, 0]; 3: [3, 0, 0, 0]; 4: [0, 1, 0, 0]; 5: [1, 1, 0, 0]; 6: [2, 1, 0, 0]; 7: [3, 1, 0, 0]; 8: [0, 2, 0, 0]; 9: [1, 2, 0, 0]; 10: [2, 2, 0, 0]; 11: [3, 2, 0, 0]; 12: [0, 3, 0, 0]; 13: [1, 3, 0, 0]; 14: [2, 3, 0, 0]; 15: [3, 3, 0, 0]; 16: [0, 0, 1, 0]; 17: [1, 0, 1, 0]; 18: [2, 0, 1, 0]; 19: [3, 0, 1, 0]; 20: [0, 1, 1, 0]; 21: [1, 1, 1, 0]; 22: [2, 1, 1, 0]; 23: [3, 1, 1, 0]; 24: [0, 2, 1, 0]; 25: [1, 2, 1, 0]; 26: [2, 2, 1, 0]; 27: [3, 2, 1, 0]; 28: [0, 3, 1, 0]; 29: [1, 3, 1, 0]; 30: [2, 3, 1, 0]; 31: [3, 3, 1, 0]; 32: [0, 0, 2, 0]; 33: [1, 0, 2, 0]; 34: [2, 0, 2, 0]; 35: [3, 0, 2, 0]; 36: [0, 1, 2, 0]; 37: [1, 1, 2, 0]; 38: [2, 1, 2, 0]; 39: [3, 1, 2, 0]; 40: [0, 2, 2, 0]; 41: [1, 2, 2, 0]; 42: [2, 2, 2, 0]; 43: [3, 2, 2, 0]; 44: [0, 3, 2, 0]; 45: [1, 3, 2, 0]; 46: [2, 3, 2, 0]; 47: [3, 3, 2, 0]; 48: [0, 0, 3, 0]; 49: [1, 0, 3, 0]; 50: [2, 0, 3, 0]; 51: [3, 0, 3, 0]; 52: [0, 1, 3, 0]; 53: [1, 1, 3, 0]; 54: [2, 1, 3, 0]; 55: [3, 1, 3, 0]; 56: [0, 2, 3, 0]; 57: [1, 2, 3, 0]; 58: [2, 2, 3, 0]; 59: [3, 2, 3, 0]; 60: [0, 3, 3, 0]; 61: [1, 3, 3, 0]; 62: [2, 3, 3, 0]; 63: [3, 3, 3, 0]; 64: [0, 0, 0, 1]; 65: [1, 0, 0, 1]; 66: [2, 0, 0, 1]; 67: [3, 0, 0, 1]; 68: [0, 1, 0, 1]; 69: [1, 1, 0, 1]; 70: [2, 1, 0, 1]; 71: [3, 1, 0, 1]; 72: [0, 2, 0, 1]; 73: [1, 2, 0, 1]; 74: [2, 2, 0, 1]; 75: [3, 2, 0, 1]; 76: [0, 3, 0, 1]; 77: [1, 3, 0, 1]; 78: [2, 3, 0, 1]; 79: [3, 3, 0, 1]; 80: [0, 0, 1, 1]; 81: [1, 0, 1, 1]; 82: [2, 0, 1, 1]; 83: [3, 0, 1, 1]; 84: [0, 1, 1, 1]; 85: [1, 1, 1, 1]; 86: [2, 1, 1, 1]; 87: [3, 1, 1, 1]; 88: [0, 2, 1, 1]; 89: [1, 2, 1, 1]; 90: [2, 2, 1, 1]; 91: [3, 2, 1, 1]; 92: [0, 3, 1, 1]; 93: [1, 3, 1, 1]; 94: [2, 3, 1, 1]; 95: [3, 3, 1, 1]; 96: [0, 0, 2, 1]; 97: [1, 0, 2, 1]; 98: [2, 0, 2, 1]; 99: [3, 0, 2, 1]; 100: [0, 1, 2, 1]; 101: [1, 1, 2, 1]; 102: [2, 1, 2, 1]; 103: [3, 1, 2, 1]; 104: [0, 2, 2, 1]; 105: [1, 2, 2, 1]; 106: [2, 2, 2, 1]; 107: [3, 2, 2, 1]; 108: [0, 3, 2, 1]; 109: [1, 3, 2, 1]; 110: [2, 3, 2, 1]; 111: [3, 3, 2, 1]; 112: [0, 0, 3, 1]; 113: [1, 0, 3, 1]; 114: [2, 0, 3, 1]; 115: [3, 0, 3, 1]; 116: [0, 1, 3, 1]; 117: [1, 1, 3, 1]; 118: [2, 1, 3, 1]; 119: [3, 1, 3, 1]; 120: [0, 2, 3, 1]; 121: [1, 2, 3, 1]; 122: [2, 2, 3, 1]; 123: [3, 2, 3, 1]; 124: [0, 3, 3, 1]; 125: [1, 3, 3, 1]; 126: [2, 3, 3, 1]; 127: [3, 3, 3, 1]; 128: [0, 0, 0, 2]; 129: [1, 0, 0, 2]; 130: [2, 0, 0, 2]; 131: [3, 0, 0, 2]; 132: [0, 1, 0, 2]; 133: [1, 1, 0, 2]; 134: [2, 1, 0, 2]; 135: [3, 1, 0, 2]; 136: [0, 2, 0, 2]; 137: [1, 2, 0, 2]; 138: [2, 2, 0, 2]; 139: [3, 2, 0, 2]; 140: [0, 3, 0, 2]; 141: [1, 3, 0, 2]; 142: [2, 3, 0, 2]; 143: [3, 3, 0, 2]; 144: [0, 0, 1, 2]; 145: [1, 0, 1, 2]; 146: [2, 0, 1, 2]; 147: [3, 0, 1, 2]; 148: [0, 1, 1, 2]; 149: [1, 1, 1, 2]; 150: [2, 1, 1, 2]; 151: [3, 1, 1, 2]; 152: [0, 2, 1, 2]; 153: [1, 2, 1, 2]; 154: [2, 2, 1, 2]; 155: [3, 2, 1, 2]; 156: [0, 3, 1, 2]; 157: [1, 3, 1, 2]; 158: [2, 3, 1, 2]; 159: [3, 3, 1, 2]; 160: [0, 0, 2, 2]; 161: [1, 0, 2, 2]; 162: [2, 0, 2, 2]; 163: [3, 0, 2, 2]; 164: [0, 1, 2, 2]; 165: [1, 1, 2, 2]; 166: [2, 1, 2, 2]; 167: [3, 1, 2, 2]; 168: [0, 2, 2, 2]; 169: [1, 2, 2, 2]; 170: [2, 2, 2, 2]; 171: [3, 2, 2, 2]; 172: [0, 3, 2, 2]; 173: [1, 3, 2, 2]; 174: [2, 3, 2, 2]; 175: [3, 3, 2, 2]; 176: [0, 0, 3, 2]; 177: [1, 0, 3, 2]; 178: [2, 0, 3, 2]; 179: [3, 0, 3, 2]; 180: [0, 1, 3, 2]; 181: [1, 1, 3, 2]; 182: [2, 1, 3, 2]; 183: [3, 1, 3, 2]; 184: [0, 2, 3, 2]; 185: [1, 2, 3, 2]; 186: [2, 2, 3, 2]; 187: [3, 2, 3, 2]; 188: [0, 3, 3, 2]; 189: [1, 3, 3, 2]; 190: [2, 3, 3, 2]; 191: [3, 3, 3, 2]; 192: [0, 0, 0, 3]; 193: [1, 0, 0, 3]; 194: [2, 0, 0, 3]; 195: [3, 0, 0, 3]; 196: [0, 1, 0, 3]; 197: [1, 1, 0, 3]; 198: [2, 1, 0, 3]; 199: [3, 1, 0, 3]; 200: [0, 2, 0, 3]; 201: [1, 2, 0, 3]; 202: [2, 2, 0, 3]; 203: [3, 2, 0, 3]; 204: [0, 3, 0, 3]; 205: [1, 3, 0, 3]; 206: [2, 3, 0, 3]; 207: [3, 3, 0, 3]; 208: [0, 0, 1, 3]; 209: [1, 0, 1, 3]; 210: [2, 0, 1, 3]; 211: [3, 0, 1, 3]; 212: [0, 1, 1, 3]; 213: [1, 1, 1, 3]; 214: [2, 1, 1, 3]; 215: [3, 1, 1, 3]; 216: [0, 2, 1, 3]; 217: [1, 2, 1, 3]; 218: [2, 2, 1, 3]; 219: [3, 2, 1, 3]; 220: [0, 3, 1, 3]; 221: [1, 3, 1, 3]; 222: [2, 3, 1, 3]; 223: [3, 3, 1, 3]; 224: [0, 0, 2, 3]; 225: [1, 0, 2, 3]; 226: [2, 0, 2, 3]; 227: [3, 0, 2, 3]; 228: [0, 1, 2, 3]; 229: [1, 1, 2, 3]; 230: [2, 1, 2, 3]; 231: [3, 1, 2, 3]; 232: [0, 2, 2, 3]; 233: [1, 2, 2, 3]; 234: [2, 2, 2, 3]; 235: [3, 2, 2, 3]; 236: [0, 3, 2, 3]; 237: [1, 3, 2, 3]; 238: [2, 3, 2, 3]; 239: [3, 3, 2, 3]; 240: [0, 0, 3, 3]; 241: [1, 0, 3, 3]; 242: [2, 0, 3, 3]; 243: [3, 0, 3, 3]; 244: [0, 1, 3, 3]; 245: [1, 1, 3, 3]; 246: [2, 1, 3, 3]; 247: [3, 1, 3, 3]; 248: [0, 2, 3, 3]; 249: [1, 2, 3, 3]; 250: [2, 2, 3, 3]; 251: [3, 2, 3, 3]; 252: [0, 3, 3, 3]; 253: [1, 3, 3, 3]; 254: [2, 3, 3, 3]; 255: [3, 3, 3, 3];

Dann ist eine (potentielle) Lösung - p:t bedeutet Teil t ist an Position p, wobei die Positionen Reihe für Reihe durchnumeriert sind:

|0:4|1:17|2:64|3:16|4:17|5:37|6:137|7:38|8:149|9:77|10:47|11:163|12:140|13:35|14:184|15:218|16:80|17:84|18:81|19:17|20:33|21:34|22:18|23:72|24:6|25:49|26:216|27:122|28:210|29:120|30:187|31:135|32:5|33:21|34:85|35:65|36:8|37:34|38:164|39:161|40:128|41:12|42:55|43:205|44:23|45:93|46:75|47:50|48:0|49:20|50:69|51:1|52:32|53:168|54:170|55:138|56:2|57:48|58:252|59:243|60:244|61:245|62:193|63:60|64:160|65:148|66:97|67:144|68:88|69:90|70:106|71:146|72:96|73:156|74:79|75:31|76:111|77:143|78:3|79:44|80:154|81:102|82:169|83:166|84:165|85:133|86:41|87:150|88:105|89:182|90:241|91:196|92:57|93:226|94:176|95:232|96:86|97:73|98:26|99:74|100:42|101:130|102:40|103:134|104:25|105:94|106:127|107:211|108:124|109:203|110:14|111:59|112:101|113:129|114:36|115:145|116:104|117:162|118:152|119:98|120:132|121:53|122:237|123:183|124:119|125:115|126:240|127:236|128:102|129:66|130:24|131:70|132:9|133:10|134:22|135:89|136:82|137:108|138:171|139:190|140:215|141:109|142:175|143:155|144:246|145:209|146:100|147:177|148:208|149:112|150:212|151:117|152:229|153:185|154:234|155:174|156:151|157:121|158:250|159:214|160:95|161:119|162:233|163:158|164:71|165:45|166:167|167:189|168:235|169:142|170:43|171:186|172:198|173:61|174:255|175:231|176:197|177:29|178:91|179:118|180:225|181:34|182:58|183:222|184:107|185:178|186:200|187:30|188:83|189:76|190:15|191:27|192:51|193:228|194:181|195:253|196:251|197:194|198:28|199:103|200:102|201:110|202:147|203:116|204:213|205:113|206:224|207:180|208:51|209:11|210:46|211:191|212:239|213:131|214:52|215:201|216:54|217:249|218:230|219:141|220:39|221:173|222:187|223:206|224:179|225:192|226:56|227:254|228:219|229:114|230:220|231:99|232:188|233:223|234:123|235:242|236:248|237:202|238:62|239:195|240:126|241:227|242:172|243:159|244:87|245:125|246:247|247:217|248:78|249:7|250:13|251:63|252:207|253:19|254:92|255:67



Kirk
04.07.2016, 17:32

Als Antwort auf den Beitrag von drdwo

Re: Puzzle mit 4x4 Teilen (etwas offtopic)

Hallo Dietmar,

ich kann Deine Lösung bislang nur teilweise bestätigen: Die 256 Bauteilesind zumindest schon einmal eindeutig (aber das war ja auch der einfache Teil).
Die Lösung als solche kann ich leider bislang noch nicht bestätigen, da mir nicht ganz klar ist, wie Du die Teile anordnen möchtest.

Sehe ich das Richtig: Das Spielfeld sieht wie folgt aus:
0 | 1 | 2 | 3 ...
16 | 17 | 18 | 19 ...
32 | 33 | 34 | 35 ...

Wenn ich jetzt das erste Teil legen möchte, sieht das nach Deiner Lösung wie folgt aus:

Teil: 4: [0, 1, 0, 0]
Position: |0:4|

Die obere linke Ecke müßte daher wie folgt aussehen:
0 1
0 0

Daran schließt dann das nächste Teil an:
Teil: 17: [1, 0, 1, 0]
Position: 1:17

0 1 | 1 0
0 0 | 1 0

Schon beim 2. Teil klappt's also nicht. Oder verwendest Du eine andere Anordnung?

Gruß

Thomas


\\//_ Build long and ℘rosper!


IngoAlthoefer
04.07.2016, 18:12

Als Antwort auf den Beitrag von Kirk

Re: Puzzle mit 4x4 Teilen (etwas offtopic)

Hallo Dietmar, hallo Thomas,
ich habe noch etwas mehr Probleme beim Nachvollziehen:
Die Liste hat 1:17 und etwas später 4:17 ...
Das würde bedeuten, dass das Teil 17 (mindestens) zwei Mal vorkäme.

Hmm, Ingo.


Mein MoC ist fertig, wenn ich
nichts mehr wegnehmen mag.


drdwo
04.07.2016, 18:51

Als Antwort auf den Beitrag von IngoAlthoefer

Re: Puzzle mit 4x4 Teilen (etwas offtopic)

Das ist richtig, es gibt ein Problem mit der Lösung. Teil 17 wird zweimal angezeigt. Da gibt es noch ein Problem mit dem Verfahren. Beim 2-Farben Problem bekomme ich auch 800 Lösungen, also hat es mit den Verbesserungen zu tun. Das vorher berechnete 9x9er, das ich als Basis verwende, wurde anscheinend falsch eingetragen. Ein 256er sollte aber trotzdem möglich sein, werde den Fehler beheben und es dann weiter versuchen.



38 nachfolgende Beiträge sind ausgeblendet

Alle anzeigen Immer alle anzeigen

Gesamter Thread: